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Abstract—We investigate the impact of the protocol stack
on traffic burstiness at large time-scales in wireless multi-hop
network traffic. Origins of traffic burstiness at large scales (like
its LRD nature) have been mostly attributed to the heavy-tails in
traffic sources. In wired networks, protocol dynamics have little
impact on large time-scale dynamics. However, given the nature
of wireless networks, the MAC and routing layers together can
lead to route flapping or oscillations even in a static network.
Hence, we explore whether these dynamics can lead to traffic
burstiness and LRD. Using network simulations, we analyze
traffic for two MANET routing protocols - OLSR and AODV. By
varying the routing protocol parameters, we analyze their role in
inducing or preventing route oscillations, and study their impact
on traffic LRD. We find that, losses in OLSR control packets, due
to congestion at the MAC, can lead to route oscillations and traffic
burstiness at large timescales. By tuning the parameters, route
oscillations and traffic LRD can be avoided. AODV dynamics
show little evidence for traffic LRD, even though we cannot rule
out this possibility. We also show that the route oscillations can
have heavier body and tail than exponential distribution, and that
the Markovian framework for route oscillations is inadequate
to explain the observed traffic scaling. Lastly, we give a model
that captures the MAC and OLSR routing protocol interactions
and depending upon chosen protocol parameters and input load,
correctly predicts the presence of traffic LRD. Thus, we use this
model to design appropriate choice of protocol parameters to
mitigate traffic burstiness at large-timescales.

I. INTRODUCTION

The existence of self-similarity in Ethernet LAN was es-

tablished with the seminal work of Leland et al. [1]; self-

similarity and the related phenomena of long-range depen-

dence (LRD) characterized the unexpected burstiness and cor-

relation of the network traffic at large-time scales. LRD nature

of the traffic has significant impact on network performance

through queue-occupancy, service times, packet losses, etc.

Existence of LRD also invalidates the use of Poisson arrivals

and Markovian queuing analysis. Since then, many works

have shown the existence of traffic LRD in various data

networks such as ATM, WAN, etc. [2]–[4]. In most of these

networks, the high variability in traffic sources, characterized

by heavy-tail distributions, has been attributed as one of the

main causes of traffic LRD. In particular, heavy-tails in file

sizes, connection or flow durations, inter-arrival times, etc.,

have been empirically verified [2], [5], [6]. And, through

the fundamental result on On/Off model by Taqqu et al. [5],

the causal link between heavy-tails and LRD in an idealized

setting has been established. Even though idealized, the result

and its variations, have been applied with great success in

many real-measurements [5], [6] as well as simulation-based

studies [7], [8]. The wide applicability of the model in various

network settings has led to the belief that the network protocols

themselves play little part in the large time-scale behavior of

traffic, and that protocol dynamics affect only the small-time

scale properties [3], [7], [9].

While the existence of LRD has been widely studied in

wire-line networks, there are very few studies in wireless

networks [10], [11]. Given the belief that network protocols

won’t affect large time-scale behavior, it is generally expected

that wireless networks will yield similar results. However,

we believe, LRD in wireless networks can be qualitatively

and quantitatively different, as they include a number of new

features such as shared wireless medium, fading as well as

mobility. The lower-layer protocols are expected to have more

pronounced impact in wireless networks. Due to variable

link conditions in wireless networks, the routing protocol

can also cause changes in multi-hop routes even in a static

topology. The link ‘failure’ detection mechanisms are different

for wireless networks; a certain number of consecutive packet

drops is usually used as indicator of link failure, even though

these packet drops can be due to fading or congestion. Thus,

the wireless medium can introduce route changes which can

potentially affect traffic burstiness at large timescales. Hence,

we wish to re-examine the impact of protocols on the traffic

LRD, in wireless multi-hop networks.

We carry out a simulation-based study to find the relation

between traffic burstiness and the impact of protocols in multi-

hop wireless networks. In particular, we focus on the role

of routing protocols and contention-based MAC on traffic

burstiness. We study two of the most popular routing protocols

- OLSR [12] and AODV [13]. We observe that losses of OLSR

routing control packets, at the MAC layer, can lead to route

changes even in static networks. Such route changes, in turn,

result in bursty traffic at intermediate nodes. Even though,

the typical timescale of routing protocol packets is of the

order of few seconds, we see that traffic burstiness is observed

even at time-scales of up to several hours. Thus, unlike the

wired networks studied before, the varying nature of wireless

‘links’ and their impact on routing protocols, result in traffic

brustiness at much larger timescales.
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Our own preliminary experiments show that the perfor-

mance of contention-based MAC, like 802.11, is affected by

the traffic burstiness at large-timescales. Also, LRD or not,

the observed traffic oscillations directly impact the carried

load in the network. For some of the scenarios, we observed

a throughput drop of up to 15 % due to avoidable route

oscillations. Hence, it is important to characterize the large-

timescale behavior of traffic for more accurate performance

evaluation and network design. Otherwise, the actual QoS will

be much worse than predicted by traditional models.

For the OLSR scenario, we also model the observed traffic

burstiness phenomena using models in two steps. At first,

using a simple On/Off packet train model, we explain how

route oscillations can lead to traffic burstiness, and how a

Markovian framework for route oscillations is not sufficient

to explain the large-timescales burstiness. Using a simple 4-

node scenario with a single connection, we provide evidence

for sub-exponential On and Off durations, providing some

evidence for protocol-induced ‘heavy-tails’. In the second part,

we model the 802.11 MAC and OLSR protocols to show how

input traffic load levels can impact protocol dynamics and

lead to topology changes even in a static network. We use

approximate models to predict the presence of traffic burstiness

at large timescales. In particular, we use the 802.11 MAC

and OLSR models from [14], [15], to find the probability of

topology changes; thereby, leading to traffic burstiness in at

least some of the intermediate nodes. Lastly, while protocols

can lead to traffic burstiness at large-timescales, appropriate

tuning of protocol parameters can mitigate the effect. We

use our models to correctly predict what choices of protocol

parameters will results in traffic burstiness and what choices

will not. Thus, we use the models not just to explain the

observed phenomenon, but also to aid in network design.

The paper is organized as follows: In Sec. II, we provide

some preliminaries for traffic analysis as well as the relevant

protocol dynamics at play in our study. Sec. III includes our

preliminary simulation studies which show evidence of traffic

burstiness due to OLSR protocol and contention-based MAC.

In Sec. IV, we give the details about the On/Off model for

route oscillations. Sec. VI, provides a simplistic model linking

load-levels, MAC failure probabilities and the resulting impact

on OLSR routing. In Sec. VII, we test our models on newer

scenarios and demonstrate how we can use them to tune the

network parameters appropriately.

II. PRELIMINARIES

A. Traffic Scaling and Wavelet Analysis

To analyze traffic at different timescales, a commonly used

tool is based on the Discrete Wavelet Transform [9], [16].

The Multi Resolution Analysis consists of splitting a given

sequence of observationsX = {X1 . . .Xn} into the (low pass)

approximation and the (high-pass) details :

X =

n/2J
∑

k=1

aX(J, k)φJ,k(t) +

J
∑

j=1

n/2J
∑

k=1

dX(j, k)ψj,k(t) (1)

where φj,k(t) and ψj,k(t) are shifted and dilated versions of

the scaling function φ0(t) and the mother wavelet ψ0(t).
The quantity |dX(j, k)|2 measures the amount of energy

in signal X about time t0 = 2jk and about the frequency

2−jλ0 where λ0 is a reference frequency which depends on

the choice of ψ0. And the expectation of energy that lies within

a bandwidth 2−j around the frequency 2−jλ0, is denoted by

E[Ej ] and is approximated by 1

nj

∑nj

k=1
|dX(j, k)2|, where nj

is the number of wavelet coefficients at scale or octave j.

The wavelet analysis is widely used to study the Long Range

Dependence (LRD) properties of a time-series as well [17]. If

X is an LRD process, then the wavelet coefficients satisfy:

yj = log2
( 1

nj

nj
∑

k=1

|dX(j, k)2|
)

∼ (2H − 1)j + c, (2)

where c is a constant andH is the Hurst parameter which char-

acterizes the degree of LRD. From Eq. (2), a linear regression

fit to the plot of yj against octave j gives an estimate of H .

However, to get a good Hurst estimate the region of scaling

needs to be carefully identified [8]. Nevertheless, scaling over

a finite range of octaves is indicative of traffic burstiness at

corresponding timescales. And scaling at higher octaves is a

good enough indicator for the presence of LRD.

B. Routing Protocol Dynamics

For multi-hop scenarios, the routing protocol plays a role in

shaping traffic. Even in a static topology, the routing protocol

may change routes due to losses. Loss of routing protocol

control packets at the MAC (due to congestion or physical

layer losses) can lead to the inference of topology changes.

This in turn, can result in route changes even for static

topology. Such changes in the routes may lead to additional

dynamics in the traffic at each node. In our simulations we

either use the OLSR [12] or AODV [13] routing protocols.

We summarize the details relevant to our study here.

OLSR is a proactive routing protocol. It relies on periodic

HELLO and TOPOLOGY CONTROL (or TC) packets to

discover local and global topology, respectively. Each node

periodically broadcasts HELLO packets (with period T ).

Whenever a neighboring node receives a HELLO packet, the

node assumes that the link to the sender is up. IfD consecutive

HELLO messages are lost (timed-out), the node infers link

failure. Based on the local neighborhood information from

HELLO packets, TC packets are broadcast throughout the

network, and each node stores its limited view of the global

topology. Based on this topology, each node chooses the

best next-hop for a given destination. Any changes in local

topology, inferred due to HELLO packets, triggers network-

wide updates in global topology. Thus, losses in HELLO

packets (even due to congestion or fading) can result in

changes in inferred topology and hence, the routes.

AODV is a reactive routing protocol. Whenever a new

connection is arrives, the source attempts to find the best path

to the destination. For a new destination, the source broadcasts

Route Request (RREQ) packets which are propagated in the

network. The destination node sends out Route Reply (RREP)
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packets along the best path, using the information stored in the

RREQ packets. Once a path has been established, the liveliness

of the links on the path is determined using both explicit and

implicit methods. Explicit methods rely on periodic HELLO

packets on the active links. Implicit methods rely on MAC

layer ACKs or control messages. Any of these packets could

be dropped at the MAC and PHY layers.

In OLSR, nodes keep an updated view of the entire topol-

ogy. In the event of a link failure, nodes will quickly route

paths on newer links. If that new path becomes congested later,

it might trigger more link ‘failures’. Thus, it is possible that

the routes keep oscillating between two paths, leading to traffic

burstiness at the intermediate nodes. In AODV, in contrast,

nodes only store active routes. In the event of link failure,

there is route recovery. Compared to an OLSR scenario, it is

more likely that the route recovery mechanism returns the old

path, although route oscillations can occur in AODV as well.

III. SIMULATION STUDY

At first, we conduct some preliminary experiments to ana-

lyze the role of protocol dynamics in shaping traffic at large

timescales. This serves as the motivation for a more detailed

modeling and analysis that follows. We used OPNET [18], to

study traffic scaling in wireless networks. We studied multi-

hop scenarios using IEEE 802.11b MAC (DCF mode). MAC

and PHY parameters were set to the standard values. However,

to keep our focus on the MAC and higher layers, we set a

unit-disc model for the communication range. To achieve this,

we used a two-ray ground propagation model, and modified

the CCK modulation scheme’s BER curve to be either 0 or 1

depending upon the SNR. Thus, a pair of nodes within a given

distance threshold can communicate without any physical layer

errors. Even though we did not report the results here, we

repeated our experiments with realistic PHY and SNR models,

to obtain similar results qualitatively.

We used a 30-node topology as shown in Fig. 1(a). There

are multiple short connections within the clusters, but there

are some connections across the clusters as well. The traffic

applications use TCP/IP protocols (we obtained similar results

using UDP). We ran multiple simulations with varying load

levels, and different random seeds for each load level. For each

of the scenarios studied below, we ran each simulation for 1

day. At each node, we measured the MAC layer throughput

every ∆ = 0.1 sec. To study the impact of routing protocols,

we ran two sets of simulations - one each with OLSR and

AODV protocols. We initially chose the default parameters

according to the respective RFCs. However, route oscillations

were clearly visible in OLSR scenarios (and not so obvious for

AODV). To study the OLSR route oscillations in more detail,

we tuned the OLSR routing parameters as described later.

A. Impact of Routing Protocols

For each connection, we used exponential file sizes (with

mean 13715 Bytes) and exponential inter-request time, with

mean 2 sec (for medium load) or 10 sec (for low load). For

medium load (mean inter-request time = 2 sec), the total

(a) 30-Node Scenario (b) 4-Node Scenario

Fig. 1. Simulated Topologies

offered load was around 1.5Mbps. While it is difficult to

characterize the capacity of the network, we call the load-

level medium, because, for properly tuned routing protocols

(as described later), all of the offered load was carried by the

network. Even for the default OLSR scenario, the throughput

was 99.6%.

Fig. 2 shows the wavelet analysis for the traffic successfully

received at the MAC layer of a sample Node 25 (measured

in bps). On the x-axis, octave j corresponds to t = 2j ∗ ∆,

where ∆ = 0.1 seconds. Thus, octave j = 10 implies t =
100 seconds. Scaling at large timescales is indicative of traffic

LRD. Fig. 2(a) shows that, the traffic at the intermediate Node

25 displayed LRD, when using the OLSR routing protocol.

For exactly the same parameters, but using AODV, there was

no clear evidence of traffic LRD (see Fig. 2(c)). We made

similar observations for low load scenarios. While we may

debate whether the finite series is actually LRD or is ’pseudo-

LRD’, the traffic is definitely bursty at scales from hundreds of

seconds to several hours. Thus, to the best of our knowledge,

unlike any other previous study, our simulations show for the

first time that wireless network protocols can impact traffic at

large timescales for several hours. This impacts the network

performances as discussed before. For the sake of brevity, we

call this traffic burstiness as traffic ’LRD’ in the following

discussions, although ‘pseudo-LRD’ will be more appropriate.

Fig. 3 shows the time series plot for traffic at sample node

25 for low-load scenario. Clearly, Fig. 3(a) shows that there

were periods of very low traffic at node 25 when using OLSR.

During the times when node 25 was carrying less traffic,

neighboring nodes (especially node 24) carried more traffic

(Fig. 3(b)). These results are evidence of route oscillations,

in OLSR, leading to traffic LRD. At least for the scenarios

studied, AODV induced little traffic burstiness.

B. Impact of OLSR Parameters

To study the impact of the OLSR protocol in inducing traffic

LRD, we changed the OLSR protocol parameters. In OLSR,

the default values of T is 2 sec, and D is 3 (Sec. II-B). That

is, if D = 3 consecutive HELLO messages are lost (timed-

out), the node infers link failure, which results in topology

and route updates. In our scenario, even though the topology

is static, periodic HELLO packets may be lost at the MAC

layer. To test our hypothesis that route changes are due to
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(d) AODV (low load)

Fig. 2. LRD due to Routing Protocol
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Fig. 3. Evidence of Route Oscillations in OLSR scenario

drops of consecutive HELLO packets, we set D = 10. Hope-
fully, the probability of 10 consecutive packet drops (spread

over T ∗ D = 20sec) is low enough to avoid unnecessary

route updates. We re-ran our simulation and analysis for the

scenarios as above with D = 10 for OLSR. We denote these

scenarios as Tuned-OLSR. Fig. 4 shows that there was no LRD

in traffic. Also, there were no route or topology updates after

the initial setup time. Clearly, by tuning the OLSR parameters,

unnecessary route oscillations were avoided. This in turn, leads

to absence of routing-protocol-induced LRD.
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(b) Tuned-OLSR (low load)

Fig. 4. Parameter tuning in OLSR to avoid route oscillations and traffic LRD

IV. TRAFFIC BURSTINESS DUE TO ROUTE OSCILLATIONS

In this section, we investigate the relationship of the ob-

served traffic burstiness at large timescales to the presence of

route oscillations. We attempt to model the route oscillations

using a simple On/Off packet train model and use it to explain

the observed traffic scaling.

1) Analysis of Simple 4-node Topology: We start with a

simple topology (Fig. 1(b)). Nodes 1 and 4 are the source and

destination. Nodes 2 and 3 forward traffic depending upon

routes chosen by the protocols. OLSR will typically select

route 1 −→ 2 −→ 4 or else 1 −→ 3 −→ 4. However, due to

intermittent link losses of OLSR Control Packets, OLSR can

infer the topology incorrectly. Hence, the chosen route (and

forwarded traffic) oscillates between the two paths. For the

intermediate nodes, then, the traffic at it’s MAC layer depends

on the chosen route at the source. And hence, incoming traffic

can be modeled using an On/Off model packet train model.

Since we are focusing on the large time-scale behavior, we

can ignore the small time-scale dynamics (due to the source

and the MAC layer). Hence, we assume a constant traffic rate

during the On periods and no traffic during the Off periods.

We measured the traffic at intermediate nodes (2 and 3) and

analyzed their scaling properties. Fig. 5 shows a few sample

plots indicating a strong presence of traffic burstiness at large

timescales. The high (low) load scenario corresponds to mean

inter-arrival time was 0.06 seconds (0.8 seconds). We observed

similar behavior for different load levels.
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(b) Low Load

Fig. 5. Timescale of Traffic Burstiness in 4-Node Scenario

We also measured routing table statistics and deduced the

On/Off durations for traffic at the intermediate nodes. For

example, whenever node 2 is present on the chosen path, it

corresponds to the On duration for node 2. And when the

chosen path is 1 −→ 3 −→ 4, it corresponds to the Off

duration for node 2. Then, using the On/Off Model, we attempt

to predict the traffic burstiness. Initially, motivated by the

usual Markovian framework, we assumed i.i.d. Exponential

distributions for the On and Off Durations with appropriate

mean (17.48 and 23.67, respectively) corresponding to the

observed values. Fig. 6(b) shows that the Markovian model for

route oscillations cannot explain the observed traffic burstiness

(Fig. 6(a)) at large timescales of several hours, which is 3-4

orders of magnitude higher than the mean. However, if we use

the empirical distributions, the prediction about traffic scaling

is accurate (Fig. 6(c)). Note that, Fig. 6 uses ∆ = 1 (unlike

 !"#$" %&$'(()*+$,-./%-00*(-*($'.$123$4-%5206/(7$82069&2:

;<



∆ = 0.1) seconds as the sampling interval, hence the shift in

the x-axes.
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(c) On/Off Model with Empirical
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Fig. 6. On/Off Model and Traffic Burstiness

In Fig. 7, we plot the On and Off duration distributions

for the high load scenario (mean inter-arrival time of 0.06

seconds). It shows the CCDF and quantile-quantile (QQ) plot

for the On and the Off (empirical) distributions compared

to exponential distributions with respective means. As can

be seen, the On durations have much heavier-body, and

slightly fatter tail compared to the exponential. Note that the

CCDF plot is on a log-log scale. Repeated experiments with

different load conditions and different random seeds yielded

similar observations. These observations are in line with sub-

exponential tails leading to burstiness at much higher scales.

Whether the empirical distributions are true heavy-tails, needs

more detailed evaluation.

V. MODELING THE MAC COLLISIONS AND OLSR LINK

FAILURES

A. MAC Model

Starting with the seminal work by Bianchi et al. [19],

there are some works [14], [20], [21] in throughput modeling

for networks using 802.11 MAC. They are abstract MAC

models for estimating the average transmission attempt rates,

collision rates, service times and throughput. They model the

detailed working of the collisions and back-offs to get good

approximations to average throughput. In this paper, we use

our considerably more realistic model introduced in [22] and

improved in [14]. In our model, given the input load, the

MAC model approximates the average MAC frame drop

probabilities β over various links. We use these MAC frame

drop probabilities as the probabilities of OLSR control packets

losses, which form the input to our OLSR model.
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(c) QQ plot for On Durations

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Exponential Quantiles

E
m

p
ir
ic

a
l 
Q

u
a
n
ti
le

s

(d) QQ plot for Off Durations

Fig. 7. Empirical On and Off Durations Distribution Compared With
Exponential

B. OLSR Model

Here, we present a model for the working of OLSR

route calculations. In particular, given the packet transmission

failures (MAC frame drop probabilities), our model tries

to find out the probability of topology change (and route

recalculations). For this, we use our earlier component-based

performance models from [15]. However, we modify the

models for our new metric of interest: the probability of

topology changes.

The Neighbor Discovery Component (NDC) of OLSR is

responsible for detection of changes in a node neighborhood.

NDC relies on periodic transmission of HELLO messages

for detection of neighbors. From the HELLO messages, a

node can detect its neighbors. This local information about

bidirectional links is flooded through out the network using

TOPOLOGY CONTROL messages. The controlled flooding

for TOPOLOGY CONTROL messages along with the HELLO

messages, help nodes to construct a global view and discover

routes.

We model the NDC as a Finite State Machine (FSM). The

Markov chain model for the link between nodes i and j is

depicted in Figure 8. The parameter sij is the probability of

success in sending HELLO messages and fij is the probability

of failure. The design (or control) parameters for NDC are the

U and D parameters that can be set to achieve the desired

performance. In OLSR, the value of U is fixed to 1.

Let πk be the steady state probability that NDC is in state

k of the Markov chain. Then, the probability of detecting a

directional link to node j at node i is:

qij =

U+D−1
∑

k=U

πk, (3)

where πk and qij are functions of sij and fij .

We assume that the probability of successful transmission

from i to j and from j to i are independent from each other.
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Fig. 8. Markov chain model for the neighbor discovery mechanism

Then the two FSMs at nodes i and j (for directional links j −→
i and i −→ j, respectively), can be assumed to be independent.

Then the bidirectional link state is UP (BU ) if both FSMs are

in directional UP states (otherwise BD). Thus, the probability

of a bidirectional link detection is:

pij = qij · qji. (4)

For brevity, we assume fij = fji = f . (The general case of

fij 6= fji is a simple extension). The probability of change of

bidirectional link status is, then:

pchange = pBU−→BD · p+ pBD−→BU · (1− p) (5)

where

pBU−→BD =
2πU+D−1 · f · q − π2

U+D−1
· f2

p
(6)

And,

pBU−→BD =
2πU−1 · s · q + π2

U−1
· s2 − 2πU−1πU+D−1 · s · f

1− p
(7)

Thus, pchange(f) gives the probability of state change for

a particular link, as a function of it’s MAC layer frame drop

probability f . Change in any link status may results in global

topology change and may lead to route calculations. Since,

route recalculations are performed at every fixed intervals and

aggregated for all link changes, we make another approxima-

tion. We assume that the probability of topology change ν

is dominated by the probability of link status change of the

most suspectible link. Hence, we assume ν = pchange(βmax),
where βmax is the maximum of (vector) β over all links,

obtained from the MAC model described previously.

VI. MODELING ROUTE OSCILLATIONS DUE TO MAC

LOSSES

In Sec. IV, we used the On/Off model to demonstrate

how the route oscillations lead to traffic burstiness, in a

simple scenario. In this section, we aim to predict when

route oscillations may occur in a large topology, when using

OLSR. Depending on the input load levels, and the choice of

OLSR design parameter D, we model the 802.11 MAC losses

due to congestion and resulting OLSR topology changes. For

this purporse, we use the performance models developed in

Sec. V. We present the model and simulation results here to

demonstrate that the MAC and routing protocol dynamics are

the origins for the observed traffic burstiness, and also this

traffic burstiness can be mitigated by appropriate parameter

choices. The MAC model takes the offered load level and

topology as inputs to predict MAC frame drop probabilities

for various links. The OLSR model uses these MAC loss

probabilities as input to give topology change probability and

predict route oscillations. Thus, in this section, we use our

models to connect input load levels, with MAC frame drops

and OLSR topology / routing changes. We use the 30-node

topology to validate our models, and also demonstrate how

we can design the protocol parameters to avoid traffic LRD.

A. Link Losses and Topology Changes

1) Packet Collisions due to Increasing Load Levels: At

first, using the MAC model for 802.11, we find the MAC

packet or frame drop probabilities depending upon the input

load level. Depending upon the topology and different traffic

demands, each wireless ‘link’ will have varying probability

for MAC frame drop due to collisions. OLSR HELLO packets

will suffer losses according to these probabilities. Since more

MAC loss probability leads to more dynamism in OLSR link

changes, the overall rate of OLSR topology changes will be

mainly governed by the most susceptible link. Hence, amongst

all the different links, we consider the link with highest MAC

layer losses (as input to the OLSR model). In Fig. 9(a), we

show the maximum (over links) average (over time) MAC

failure probability as a function of input load. Clearly, as the

load increases, there are more collisions at the MAC level.
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Fig. 9. Load Level, MAC Losses and OLSR Topology Change Probabilities

2) OLSR Link Failures due to Packet Collisions: Now,

using the maximum MAC failure probability βmax as an input

to OLSR model, we obtain the steady-state probability of

OLSR link changes in the most susceptible link. Note that any

local change in topology is likely to result in global topology

changes and routes calculations. Also, changes at different

links are aggregated and sent periodically. Hence, even if two

links change in a slot, only one update will be propagated

network wide. Thus, the rate or probability of OLSR global

topology changes ν is mainly determined by the rate of link

status change of the most susceptible link (see Sec. V). Hence,

we assume that the OLSR model output gives the probability

of global route table calculations. Using the OLSR model,

Fig. 9(b) shows the probabilities of OLSR topology changes

as a function of MAC loss probabilities, for various choice of
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OLSR parameter D. As conjectured in Sec. III-B, higher D

implies more resilience to MAC layer losses.

We compare the OLSR model output with actual statistics

obtained from OPNET simulations. For a given value of OLSR

parameter D, Fig. 10 shows the model and OPNET probabil-

ities of topology changes (and resulting route re-calculations),

for various load-levels (normalized to 1 for maximum load of

3 Mbps). The topology change probabilities from OPNET are

obtained as the fraction of instances when HELLO message

exchanges (slotted) lead to topology changes. The y-axes are

truncated to hide low data points. Also the missing data

points for the OPNET dataset corresponds to log(0) = −∞.

The model output matches very closely with the OPNET

results. There is some mismatch at higher levels of MAC loss

probabilities, especially for D = 3. We believe that is due

to the assumption about the most susceptible link dominating

the network-wide topology changes. However, even other links

can increase the topology change rate, and their impact can

be higher at higher MAC loss levels. Nevertheless, the model

predicts the order of topology change probability correctly.
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(a) OLSR with D = 3
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(b) OLSR with D = 5
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(c) OLSR with D = 7
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(d) OLSR with D = 10

Fig. 10. OLSR Topology Changes due to Increasing Load Levels

B. Traffic LRD due to OLSR Topology Changes

Next, we turned our attention back to traffic burstiness

and wavelet analysis. We ran wavelet analysis on traffic at

intermediate nodes (as in Sec. III). For each value of D and

different load-levels, we ran the simulation for 1 day, and

repeated the experiment with 5 different random seeds. As

before, we present the sample results for central node 25.

However, instead of showing the numerous wavelet plots, we

just list the results in Tab. I. The table should be read as

follows: the value give the fraction of scenarios (out of the 5

random seeds), in which we observed traffic LRD according

to the wavelet analysis. Clearly, we see that for low values

of D, collisions at the MAC couple with OLSR to give rise

Load (in Kbps) 75 150 300 750 1500 3000

D=3 0 1 1 1 1 1

D=5 0 0 0 0 0.6 1

D=7 0 0 0 0 0 0.4

D=10 0 0 0 0 0 0

AODV 0 0 0 0 0 0

TABLE I
LRD AT NODE 25 FOR DIFFERENT LOAD LEVELS IN 30-NODE SCENARIO

to traffic LRD. And as we increase D, such traffic burstiness

can be avoided. The last row also shows the results for AODV,

validating the absence of traffic burstiness in any of the AODV

scenarios.

Combining the topology change probabilities from the

OLSR model and observed LRD in traffic, we look at traffic

LRD as a function of topology change probabilities. In Fig.

11, shows the fraction (out of 5 random seeds) of scenarios

where traffic was LRD at Node 25 (for all D). Thus, there is

a strong relation between topology change and traffic LRD.
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Fig. 11. Traffic LRD with Topology Change Probability Estimate from the
Model

VII. NETWORK DESIGN AND VALIDATION

We give additional evidence for traffic LRD. We, also,

validate the models and their utility in choosing an appropriate

value for OLSR design parameter D to avoid traffic LRD. For

these purposes, we used the topologies shown in Fig. 12.For

the 25-node scenario, we setup three connections:1 −→ 20,
5 −→ 18 and 18 −→ 25. For the 10-node scenario, we setup

10 connections: 1 −→ 9, 2 −→ 7, 3 −→ 10, 4 −→ 5, 5 −→ 1, 6 −→
8, 7 −→ 4, 9 −→ 6, 10 −→ 3.

(a) 25-Node Grid (b) 10-Node

Fig. 12. Other Topologies

We used our model to justify a choice of design parameter

D. In particular, given the topology and traffic demands, we
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Load (in Kbps) 36 360 720 1200 1800

MAC Failure

Probabilities

0.0219 0.2190 0.4152 0.6354 0.6913

Topology Change
Probability

D=3 4.1e-5 0.032 0.155 0.278 0.273
D=10 9.9e-17 7.9e-7 3.5e-4 0.015 0.03
D=20 2.5e-33 2.0e-13 5.4e-8 1.6e-4 7.6e-4

Traffic LRD
D=3 0.4 1 1 1 1
D=10 0 0 0 0.2 1
D=20 0 0 0 0 0

TABLE II
ANALYSIS FOR 25-NODE SCENARIOS

Load (in Kbps) 120 1200 2400

MAC Failure

Probabilities

0.0471 0.4303 0.7517

Topology Change

Probability

D=3 3.9e-4 0.167 0.242
D=10 2.0e-13 4.9e-4 0.053

Traffic LRD
D=3 1 1 1
D=10 0 0 1

TABLE III
ANALYSIS FOR 10-NODE SCENARIOS

relied on our model to find: 1) the MAC failure probability,

and 2) Topology change probability, for a given choice of D. If

the probability of topology change is non-negligible, then we

should see traffic LRD at least in some nodes (as in Fig. 11).

Hence, the particular choice of D is not suitable. Tab. II and

Tab. III give the results for 25-node and 10-node scenarios

respectively. They show the model outputs - the MAC loss

probabilities and topology change probabilities, for different

input load levels and design choice D. Then, the last row also

gives the presence (or absence) of traffic LRD as observed

from simulation traces. The table, and Fig. 11, show that the

model correctly predicts which values of D will give rise to

traffic LRD and which won’t. In particular, if the topology

change probability is too low, traffic will not be LRD. For

high probability of topology change, traffic will be LRD (in

atleast some of the intermediate nodes). The only exception

seems to be at load level of 0.1 with D = 3. According to the

model, the probability of topology change was negligible and

hence we should not have observed traffic LRD. We believe

this is due to the approximations of the model which seem to

be inaccurate for low load levels and low value of D (similar

to the mismatch in Fig. 10(a)). Overall, the model predicts

traffic LRD accurately, and can be used to chose the right D.

VIII. CONCLUSIONS

We explored the impact of routing protocols in large time-

scale traffic burstiness. In particular, we observed that packet

losses at the MAC (even due to congestion) can lead to

route oscillations in OLSR. Route oscillations, in turn, lead

to traffic burstiness at large timescales and LRD. We showed

that protocols in wireless multi-hop networks can induce traffic

burstiness at timescales much larger than previously thought.

We also showed that the route oscillations are not accurately

modeled by relying on Markovian models for exponential

durations. Lastly, we also used performance models for 802.11

MAC and OLSR routing, to correctly predict the MAC losses

due to input load, and resulting route oscillations and traffic

burstiness. Thus, using these models, we can design the

network settings to avoid such phenomena.

ACKNOWLEDGMENT

We are thankful to Christoforos Somarakis for helpful

discussions about LRD analysis. Research supported by the

Army Research Office under MURI award W911NF-08-1-

0238 and by the National Science Foundation under grant

CNS1018346.

REFERENCES

[1] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of ethernet traffic (extended version),” IEEE/ACM
Transactions on Networking, vol. 2, no. 1, pp. 1–15, 1994.

[2] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web
traffic: Evidence and possible causes,” Performance Evaluation Review,
vol. 5, no. 6, pp. 835–846, 1996.

[3] K. Park and W. Willinger, Eds., Self-Similar Network Traffic and

Performance Evaluation. John Wiley & Sons, 2000.
[4] O. I. Sheluhin, S. M. Smolskiy, and A. V. Osin, Eds., Self-Similar

Processes in Telecommunications. Wiley & Sons, 2007.
[5] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-

similarity through high-variability: statistical analysis of ethernet lan
traffic at the source level,” IEEE/ACM Trans. on Net., vol. 5, no. 1,
pp. 71–86, 1997.

[6] V. Paxson and S. Floyd, “Wide area traffic: the failure of poisson
modelling,” IEEE/ACM Trans. on Net., vol. 3, no. 3, pp. 226–244, 1995.

[7] K. Park, G. Kim, and M. Crovella, “On the relationship between file
sizes, transport protocols, and self-similar network traffic,” in Interna-

tional Conference on Network Protocols (ICNP), 1996, pp. 171–180.
[8] P. Abry, P. Borgnat, F. Ricciato, A. Scherrer, and D. Veitch, “Revisiting

an old friend: on the observability of the relation between long range
dependence and heavy tail,” Telecom. Systems, vol. 43, no. 3-4, pp. 147–
165, 2010.

[9] H. Jiang and C. Dovrolis, “Why is the internet traffic bursty in short
time scales,” in ACM Sigmetrics, 2005, pp. 241–252.

[10] J. Yu and A. P. Petropulu, “Is high speed wireless network traffic self-
similar?” in IEEE International Conference on Acoustics, Speech and
Signal Processing,, 2004, pp. 425–428.

[11] M. Gidlund and N. Debernardi, “Scheduling performance of heavy-
tailed data traffic in wireless high-speed shared channels,” in Wireless
Communications & Networking Conference, 2009, pp. 1818–1823.

[12] T. Clausen and P. Jacquet, “Optimized Link State Routing (OLSR),” in
IETF RFC 3626, 2003.

[13] C. Perkins, E. Belding-Royer, and S. Das, “ Ad hoc On-Demand
Distance Vector (AODV) Routing,” in IETF RFC 3561, 2003.

[14] J. S. Baras, V. Tabatabaee, and K. Jain, “A model based platform for
design and optimization of multi-hop 802.11 wireless networks,” in
International Symposium on Performance Evaluation of Wireless Ad

Hoc, Sensor, and Ubiquitous Networks, 2011, pp. 17–24.
[15] ——, “Component based modeling for cross-layer analysis of 802.11

mac and olsr routing protocols in ad-hoc networks,” in IEEE Milcom,
2009, pp. 1240–1246.

[16] A. Feldmann, A. C. Gilbert, and W. Willinger, “Data networks as
cascades: investigating the multifractal nature of internet wan traffic,”
in Proceedings of the ACM SIGCOMM, 1998.

[17] D. Veitch and P. Abry, “A wavelet based joint estimator of the parameters
of long-range dependence.” IEEE Transactions on Information Theory,
vol. 45, no. 3, pp. 878–897, 1999.

[18] OPNETModeler, http://www.opnet.com/solutions/network rd/modeler.html.
[19] G. Bianchi, “Performance Analysis of the IEEE802.11 Distributed

Coodination Function,” IEEE J. on Sel. Areas in Communications,
vol. 18, March 2000.

[20] A. Kumar, E. Altman, D. Miorandi, and M. Goyal, “New Insights from
a Fixed Point Analysis os Single Cell IEEE 802.11 WLANs,” in IEEE

Conference on Computer Communications (INFOCOM), 2005.
[21] A. Jindal and K. Psounis, “The achievable rate region of 802.11-

scheduled multihop networks,” IEEE/ACM Trans. Netw., vol. 17, 2009.
[22] J. S. Baras, V. Tabatabaee, G. Papageorgiou, and N. Rentz, “Performance

Metric Sensitivity Computation for Optimization and Trade-off Analysis
in Wireless Networks,” in IEEE Globecom, 2008, pp. 4884–4888.

 !"#$" %&$'(()*+$,-./%-00*(-*($'.$123$4-%5206/(7$82069&2:

;?


